Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Eur J Med Chem ; 253: 115320, 2023 May 05.
Article in English | MEDLINE | ID: covidwho-2298762

ABSTRACT

Niclosamide, an oral anthelmintic drug, could inhibit SARS-CoV-2 virus replication through autophagy induction, but high cytotoxicity and poor oral bioavailability limited its application. Twenty-three niclosamide analogs were designed and synthesized, of which compound 21 was found to exhibit the best anti-SARS-CoV-2 efficacy (EC50 = 1.00 µM for 24 h), lower cytotoxicity (CC50 = 4.73 µM for 48 h), better pharmacokinetic, and it was also well tolerated in the sub-acute toxicity study in mice. To further improve the pharmacokinetics of 21, three prodrugs have been synthesized. The pharmacokinetics of 24 indicates its potential for further research (AUClast was 3-fold of compound 21). Western blot assay indicated that compound 21 could down-regulate SKP2 expression and increase BECN1 levels in Vero-E6 cells, indicating the antiviral mechanism of 21 was related to modulating the autophagy processes in host cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Animals , Mice , Niclosamide/pharmacology , Imidazoles , Vero Cells , Antiviral Agents/pharmacology
2.
Virol Sin ; 38(2): 296-308, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2184345

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), an enteropathogenic coronavirus, has catastrophic impacts on the global pig industry. However, there remain no effective drugs against PEDV infection. In this study, we utilized a recombinant PEDV expressing renilla luciferase (PEDV-Rluc) to screen potential anti-PEDV agents from an FDA-approved drug library in Vero cells. Four compounds were identified that significantly decreased luciferase activity of PEDV-Rluc. Among them, niclosamide was further characterized because it exhibited the most potent antiviral activity with the highest selectivity index. It can efficiently inhibit viral RNA synthesis, protein expression and viral progeny production of classical and variant PEDV strains in a dose-dependent manner. Time of addition assay showed that niclosamide exhibited potent anti-PEDV activity when added simultaneously with or after virus infection. Furthermore, niclosamide significantly inhibited the entry stage of PEDV infection by affecting viral internalization rather than viral attachment to cells. In addition, a combination with other small molecule inhibitors of endosomal acidification enhanced the anti-PEDV effect of niclosamide in vitro. Taken together, these findings suggested that niclosamide is a novel antiviral agent that might provide a basis for the development of novel drug therapies against PEDV and other related pathogenic coronavirus infections.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Antiviral Agents/pharmacology , Vero Cells , Niclosamide/pharmacology , Niclosamide/therapeutic use , Virus Internalization
3.
BMC Pharmacol Toxicol ; 23(1): 41, 2022 06 18.
Article in English | MEDLINE | ID: covidwho-1962904

ABSTRACT

BACKGROUND: COVID-19 pandemic has claimed millions of lives and devastated the health service system, livelihood, and economy in many countries worldwide. Despite the vaccination programs in many countries, the spread of the pandemic continues, and effective treatment is still urgently needed. Although some antiviral drugs have been shown to be effective, they are not widely available. Repurposing of anti-parasitic drugs with in vitro anti-SARS-CoV-2 activity is a promising approach being tested in many clinical trials. Combination of these drugs is a plausible way to enhance their effectiveness. METHODS: The in vitro anti-SARS-CoV-2 activity of combinations of niclosamide, ivermectin and chloroquine were evaluated in Vero E6 and lung epithelial cells, Calu-3. RESULTS: All the two-drug combinations showed higher potency resulting in up to 4-fold reduction in the half maximal inhibitory concentration (IC50) values compared to individual drugs. Among these combinations, niclosamide-ivermectin achieved the highest inhibitory level of over 99%. Combination synergy analysis showed niclosamide-ivermectin combination to have the best synergy score with a mean Loewe synergy score of 4.28 and a peak synergy score of 24.6 in Vero E6 cells and a mean Loewe synergy score of 3.82 and a peak synergy score of 10.86 in Calu-3 cells. CONCLUSIONS: The present study demonstrated the benefit of drug combinations on anti-SARS-CoV-2 activity. Niclosamide and ivermectin showed the best synergistic profile and should be further tested in clinical trials.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Drug Combinations , Humans , Ivermectin/pharmacology , Niclosamide/pharmacology , Pandemics
4.
Br J Pharmacol ; 179(13): 3250-3267, 2022 07.
Article in English | MEDLINE | ID: covidwho-1764898

ABSTRACT

Vaccines have reduced the transmission and severity of COVID-19, but there remains a paucity of efficacious treatment for drug-resistant strains and more susceptible individuals, particularly those who mount a suboptimal vaccine response, either due to underlying health conditions or concomitant therapies. Repurposing existing drugs is a timely, safe and scientifically robust method for treating pandemics, such as COVID-19. Here, we review the pharmacology and scientific rationale for repurposing niclosamide, an anti-helminth already in human use as a treatment for COVID-19. In addition, its potent antiviral activity, niclosamide has shown pleiotropic anti-inflammatory, antibacterial, bronchodilatory and anticancer effects in numerous preclinical and early clinical studies. The advantages and rationale for nebulized and intranasal formulations of niclosamide, which target the site of the primary infection in COVID-19, are reviewed. Finally, we give an overview of ongoing clinical trials investigating niclosamide as a promising candidate against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Repositioning/methods , Humans , Niclosamide/pharmacology , Niclosamide/therapeutic use , Pandemics , SARS-CoV-2
5.
Eur J Med Chem ; 235: 114295, 2022 May 05.
Article in English | MEDLINE | ID: covidwho-1763709

ABSTRACT

Niclosamide, a widely-used anthelmintic drug, inhibits SARS-CoV-2 virus entry through TMEM16F inhibition and replication through autophagy induction, but the relatively high cytotoxicity and poor oral bioavailability limited its application. We synthesized 22 niclosamide analogues of which compound 5 was found to exhibit the best anti-SARS-CoV-2 efficacy (IC50 = 0.057 µ M) and compounds 6, 10, and 11 (IC50 = 0.39, 0.38, and 0.49 µ M, respectively) showed comparable efficacy to niclosamide. On the other hand, compounds 5, 6, 11 contained higher stability in human plasma and liver S9 enzymes assay than niclosamide, which could improve bioavailability and half-life when administered orally. Fluorescence microscopy revealed that compound 5 exhibited better activity in the reduction of phosphatidylserine externalization compared to niclosamide, which was related to TMEM16F inhibition. The AI-predicted protein structure of human TMEM16F protein was applied for molecular docking, revealing that 4'-NO2 of 5 formed hydrogen bonding with Arg809, which was blocked by 2'-Cl in the case of niclosamide.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Molecular Docking Simulation , Niclosamide/pharmacology
6.
J Cell Biochem ; 123(2): 155-160, 2022 02.
Article in English | MEDLINE | ID: covidwho-1473858

ABSTRACT

Drug repurposing is an attractive option for identifying new treatment strategies, in particular in extraordinary situations of urgent need such as the current coronavirus disease 2019 (Covid-19) pandemic. Recently, the World Health Organization announced testing of three drugs as potential Covid-19 therapeutics that are known for their dampening effect on the immune system. Thus, the underlying concept of selecting these drugs is to temper the potentially life-threatening overshooting of the immune system reacting to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. This viewpoint discusses the possibility that the impact of these and other drugs on autophagy contributes to their therapeutic effect by hampering the SARS-CoV-2 life cycle.


Subject(s)
Antiviral Agents/pharmacology , Artesunate/pharmacology , Autophagy/drug effects , COVID-19 Drug Treatment , Drug Repositioning , Imatinib Mesylate/pharmacology , Infliximab/pharmacology , Pandemics , SARS-CoV-2/drug effects , Antidepressive Agents/pharmacology , Antiviral Agents/therapeutic use , Artesunate/therapeutic use , Chloroquine/pharmacology , Drug Development , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum/virology , Endosomes/drug effects , Endosomes/virology , Humans , Hydroxychloroquine/pharmacology , Imatinib Mesylate/therapeutic use , Infliximab/therapeutic use , Intracellular Membranes/drug effects , Intracellular Membranes/physiology , Intracellular Membranes/virology , Ivermectin/pharmacology , Macrolides/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Niclosamide/pharmacology , Niclosamide/therapeutic use , RNA, Viral/metabolism , SARS-CoV-2/physiology , Virus Replication
7.
Colloids Surf B Biointerfaces ; 208: 112063, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1370466

ABSTRACT

COVID-19 is a rapidly evolving emergency, which necessitates scientific community to come up with novel formulations that could find quick relief to the millions affected around the globe. Remdesivir being the only injectable drug by FDA for COVID-19, it initially showed promising results, however, later on failed to retain its claims, hence rejected by the WHO. Therefore, it is important to develop injectable formulation that are effective and affordable. Here in this work, we formulated poly ethylene glycol (PEG) coated bovine serum albumin (BSA) stabilized Niclosamide (NIC) nanoparticles (NPs) (∼BSA-NIC-PEG NPs) as an effective injectable formulation. Here, serum albumin mediated strategy was proposed as an effective strategy to specifically target SARS-CoV-2, the virus that causes COVID-19. The in-vitro results showed that the developed readily water dispersible formulation with a particle size <120 nm size were well stable even after 3 weeks. Even though the in-vitro studies showed promising results, the in-vivo pharmaco-kinetic (PK) study in rats demands the need of conducting further experiments to specifically target the SARS-CoV-2 in the virus infected model. We expect that this present formulation would be highly preferred for targeting hypoalbuminemia conditions, which was often reported in elderly COVID-19 patients. Such studies are on the way to summarize its potential applications in the near future.


Subject(s)
COVID-19 , Nanoparticles , Aged , Animals , Humans , Niclosamide/pharmacology , Rats , SARS-CoV-2 , Serum Albumin, Bovine
8.
PLoS Pathog ; 17(7): e1009706, 2021 07.
Article in English | MEDLINE | ID: covidwho-1305581

ABSTRACT

Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.


Subject(s)
COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Virus Internalization/drug effects , Ammonium Chloride/pharmacology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Chloroquine/pharmacology , Clathrin/metabolism , Drug Synergism , Endocytosis/drug effects , Endocytosis/physiology , Endosomes/drug effects , Endosomes/metabolism , Humans , Hydrogen-Ion Concentration/drug effects , Hydroxychloroquine/administration & dosage , Macrolides/pharmacology , Niclosamide/administration & dosage , Niclosamide/pharmacology , Protein Binding/drug effects , Protein Domains , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/physiology , Vero Cells
9.
Nat Commun ; 12(1): 3818, 2021 06 21.
Article in English | MEDLINE | ID: covidwho-1279876

ABSTRACT

Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 µM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/metabolism , Animals , Antinematodal Agents/pharmacology , Autophagosomes/metabolism , Autophagy , Autophagy-Related Proteins/metabolism , COVID-19/pathology , Cells, Cultured , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Humans , Lung/metabolism , Lung/pathology , Lung/virology , Metabolome , Niclosamide/pharmacology , Organoids , SARS-CoV-2/isolation & purification , Spermidine/pharmacology , Spermine/pharmacology , COVID-19 Drug Treatment
10.
Nanoscale ; 13(13): 6410-6416, 2021 Apr 07.
Article in English | MEDLINE | ID: covidwho-1189295

ABSTRACT

The control of COVID-19 across the world requires the formation of a range of interventions including vaccines to elicit an immune response and immunomodulatory or antiviral therapeutics. Here, we demonstrate the nanoparticle formulation of a highly insoluble drug compound, niclosamide, with known anti SARS-CoV-2 activity as a cheap and scalable long-acting injectable antiviral candidate.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Niclosamide , SARS-CoV-2/drug effects , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Humans , Injections, Intramuscular , Nanoparticles , Niclosamide/administration & dosage , Niclosamide/pharmacology
11.
Bioorg Med Chem Lett ; 40: 127906, 2021 05 15.
Article in English | MEDLINE | ID: covidwho-1118337

ABSTRACT

Zika virus has emerged as a potential threat to human health globally. A previous drug repurposing screen identified the approved anthelminthic drug niclosamide as a small molecule inhibitor of Zika virus infection. However, as antihelminthic drugs are generally designed to have low absorption when dosed orally, the very limited bioavailability of niclosamide will likely hinder its potential direct repurposing as an antiviral medication. Here, we conducted SAR studies focusing on the anilide and salicylic acid regions of niclosamide to improve physicochemical properties such as microsomal metabolic stability, permeability and solubility. We found that the 5-bromo substitution in the salicylic acid region retains potency while providing better drug-like properties. Other modifications in the anilide region with 2'-OMe and 2'-H substitutions were also advantageous. We found that the 4'-NO2 substituent can be replaced with a 4'-CN or 4'-CF3 substituents. Together, these modifications provide a basis for optimizing the structure of niclosamide to improve systemic exposure for application of niclosamide analogs as drug lead candidates for treating Zika and other viral infections. Indeed, key analogs were also able to rescue cells from the cytopathic effect of SARS-CoV-2 infection, indicating relevance for therapeutic strategies targeting the COVID-19 pandemic.


Subject(s)
Antiviral Agents/pharmacology , Niclosamide/analogs & derivatives , Niclosamide/pharmacology , SARS-CoV-2/drug effects , Zika Virus/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Chlorocebus aethiops , Drug Stability , Humans , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Niclosamide/metabolism , Protein Binding , Rats , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Structure-Activity Relationship , Vero Cells , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism
12.
Antimicrob Agents Chemother ; 64(7)2020 06 23.
Article in English | MEDLINE | ID: covidwho-191429

ABSTRACT

Drug repositioning is the only feasible option to immediately address the COVID-19 global challenge. We screened a panel of 48 FDA-approved drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which were preselected by an assay of SARS-CoV. We identified 24 potential antiviral drug candidates against SARS-CoV-2 infection. Some drug candidates showed very low 50% inhibitory concentrations (IC50s), and in particular, two FDA-approved drugs-niclosamide and ciclesonide-were notable in some respects.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drug Repositioning , Niclosamide/pharmacology , Pneumonia, Viral/drug therapy , Pregnenediones/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 , Cell Line , Chlorocebus aethiops , Drug Evaluation, Preclinical/methods , Humans , Pandemics , SARS-CoV-2 , Vero Cells
13.
ACS Infect Dis ; 6(5): 909-915, 2020 05 08.
Article in English | MEDLINE | ID: covidwho-3265

ABSTRACT

The recent outbreak of coronavirus disease 2019 (COVID-19) highlights an urgent need for therapeutics. Through a series of drug repurposing screening campaigns, niclosamide, an FDA-approved anthelminthic drug, was found to be effective against various viral infections with nanomolar to micromolar potency such as SARS-CoV, MERS-CoV, ZIKV, HCV, and human adenovirus, indicating its potential as an antiviral agent. In this brief review, we summarize the broad antiviral activity of niclosamide and highlight its potential clinical use in the treatment of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Drug Repositioning , Niclosamide/pharmacology , Pneumonia, Viral/drug therapy , Betacoronavirus/drug effects , COVID-19 , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Pandemics , Severe acute respiratory syndrome-related coronavirus/drug effects , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL